

# Electromagnetic Holding Solenoid Series 10 310

The electromagnetic holding rods are DC holding systems. The magnetic circuit which is open in switched on condition allows to hold ferromagnetic workpieces.

The electrical connection is made at two connecting screws which are easily accessible within the device and can be reached via a Pg gland. This gland can be screwed in alternately from the side or from the bottom.

The coil is vacuum potted, the magnet housing is zinced and the holding surface is ground. For mounting there are thread bores at the bottom side of the device.

## Application

These solenoid systems are preferably used in general machine building, for handling and in safety technology for machine building.

Lateral force loading equates to a displacement force  $\rm F_{v}$  of approximately 1/4  $\rm F_{H}.$ 

## Advantages

- High holding force with low power consumption
- Compact design
- Manifold conection options

## **Technical Data**

- Standard nominal voltage: 24 V DC
- Duty cycle: 100% ED
- Insulation class: E
- Pg-cable gland: HELUTOP HT-MS / M12 x 1,5

# **Cross Section**





## **Technical Data**

| Designation | Length (I)<br>x width (b)<br>x bight (b) | Max.<br>holding | Nominal<br>Power | Thickness<br>counter | Thread (m)<br>x depth (t) | Number<br>of threads | Clearance<br>(y <sub>1</sub> ) | $\begin{array}{c} \text{Clearance} \\ (\text{y}_{_2}) \end{array}$ | Clearance<br>(x <sub>1</sub> ) | Clearance<br>(X <sub>2</sub> ) | Weight |
|-------------|------------------------------------------|-----------------|------------------|----------------------|---------------------------|----------------------|--------------------------------|--------------------------------------------------------------------|--------------------------------|--------------------------------|--------|
|             | [mm]                                     | [N]             | [W]              | [mm]                 | [mm]                      | (y)                  | [mm]                           | [mm]                                                               | [mm]                           | [mm]                           | [kg]   |
| 10 31001A1  | 101.5 x 32 x 31                          | 880             | 6.5              | 8                    | M6x10                     | 2                    | 20                             | 50                                                                 | 12                             | 8.5                            | 0.60   |
| 10 31002A1  | 151.5 x 32 x 31                          | 1,500           | 10.5             | 8                    | M6x10                     | 3                    | 20                             | 50                                                                 | 12                             | 8.5                            | 1.00   |
| 10 31003A1  | 201.5 x 32 x 31                          | 2,100           | 12.9             | 8                    | M6x10                     | 4                    | 20                             | 50                                                                 | 12                             | 8.5                            | 1.20   |
| 10 31004A1  | 401.5 x 32 x 31                          | 4,700           | 24               | 8                    | M6x10                     | 7                    | 20                             | 50                                                                 | 12                             | 8.5                            | 2.60   |
| 10 31005A1  | 501.5 x 32 x 31                          | 6,000           | 30.6             | 8                    | M6x10                     | 9                    | 20                             | 50                                                                 | 12                             | 8.5                            | 3.20   |
| 10 31006A1  | 601.5 x 32 x 31                          | 7,200           | 45.7             | 8                    | M6x10                     | 11                   | 20                             | 50                                                                 | 12                             | 8.5                            | 4.00   |
| 10 31007A00 | 151.5 x 60 x 49                          | 2,600           | 22.3             | 10                   | M8x12                     | 2                    | 30                             | 75                                                                 | 18                             | 10                             | 2.20   |
| 10 31008A00 | 202 x 60 x 49                            | 3,750           | 30.2             | 10                   | M8x12                     | 2                    | 35                             | 120                                                                | 18                             | 10                             | 3.10   |
| 10 31009A00 | 502 x 60 x 49                            | 10,400          | 64.9             | 10                   | M8x12                     | 4                    | 35                             | 140                                                                | 18                             | 10                             | 8.00   |



Special voltage configurations are available on request +34 977 206937 or binder@binder-es.com

## Holding Force Curves

Holding forces  $F_{H}$  depending on air gap  $\delta_{L}$  between holding solenoid and workpiece and on the indicated layer thickness of the counter plate. The values are valid for workpieces of material S235JR with 100% coverage of the holding surface, 90% of nominal voltage and warmed up condition (appr. 70 K excessive temperature without additional heat dissipation).



### 10 31001A1









Layer thickness:  $\triangle$  Material thickness: a = 8 mm b = 3 mm c = 1.5 mm

#### 10 31007A00





Layer thickness:  $\triangle$  Material thickness: a = 1 mm b = 3 mm c = 6 mm





Layer thickness:  $\triangle$  Material thickness: a = 8 mm b = 3 mm c = 1.5 mm

#### 10 31008A00



f = 2.5 mm

10 31003A1



Layer thickness:  $\triangle$  Material thickness: a = 2 mm b = 4 mm c = 10 mm

#### 10 31006A1



Layer thickness:  $\triangle$  Material thickness: a = 8 mm b = 3 mm c = 1.5 mm

#### 10 31009A00



Layer thickness  $\triangleq$  Material thickness: d = 10 mm e = 5 mm f = 2.5 mm